The role of lignin decomposing basidiomycetes in the decay of water reed

Rovena Dosdall, Franziska Preuß, Prof. Dr. Frieder Schauer

Institut für Mikrobiologie
Abteilung für Angewandte Mikrobiologie
Friedrich-Ludwig-Jahn-Straße 15
17489 Greifswald

Content

1. Introduction

- reed as building material
- research on reed at the Institute of microbiology

2. Experimental

- isolation of microorganisms from thatched houses
- microbial decomposition of reed
- impact of environmental parameters on fungal reed decay

3. Summary

1. Historical review

- first thatched houses ca. 6000 BC in southern Scandinavia
- dominating the landscape of the European coasts
- until 13th century favoured building material
- decline caused by proceeding urbanisation

http://upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Ukranenland01.jpg/300px-Ukranenland01.jpg

1. Reed as building material today

Origin of reed used in Germany today

- 90 % imported from European countries
- reasons for high import rates of reed in Germany: demand has overtaken supply

German reed-growing areas deminish due to

- ➤ landscape cultivation
- > river bed strengthening
- > expansion of nature protection areas

www.1a-passivhaus.de/media/images/schilf-reet-daemmstoff-passivhaus.jpg

1. Reed as building material today

http://www.urlaub-reise-tourismus.de/images/friesenhaus-reetdach.jp

Key benefits

- thermal insulation
- sound abatement
- natural building material
- conservation of cultural assets
- durability?

1. Focus on reed at the institute of microbiology

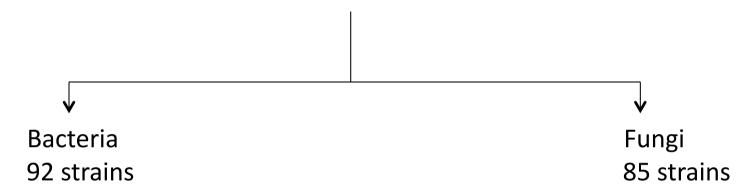
Start of research in 2008

- isolation of microorganisms from plants (*Phragmites australis*) and thatched houses
- screening of lignocellulolytic enzyme pattern
- tests for microbial ability to decompose reed
- characterization of reed-decomposing fungi
 - taxonomic determination
 - auxanography
 - temperature tolerance
- fungal decomposition of reed samples
 - influence of temperature, pH-value, metals, phosphate, nitrogen
 - protection of reed against microbial attacks

2. Isolation

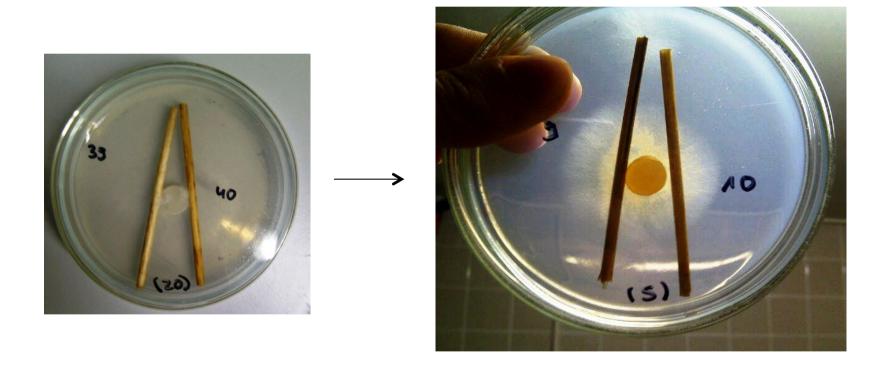
Fruiting bodies collected from thatched roofs in Northern Germany

2. Isolation


Mycelium collected from thatched roofs in Northern Germany

2. Isolation

isolated organisms from thatched houses


all strains were characterized with respect to their ability to

- ➤ degrade cellulose, hemicellulose and lignin-like model substances
- > to decompose reed samples

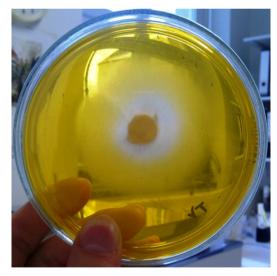
2. Decay of reed

> test for decomposition of reed by fungi

2. Decay of reed: results of bacteria

- > although 15 strains showed cellulolytic and hemicellulolytic enzyme activity
- > no ligninolytic activity could be observed

NONE of the bacterial strains was able to decompose reed



analysis of cellulolytivc enzyme activity of bacterial strains

- a.) bacterial culture on nutrient agar with carboxymethylcellulose
- b.) degradation of carboxymethylcellulose

- 53 out of 85 fungal strains were capable of cellulose and hemicellulose degradation
- 21 were able to decompose lignin-like model compounds

Decolourization of Orange G® by Trametes versicolor SBUG 1050 after 3 d

Decolourization of RBBR® by *Trametes* versicolor SBUG 1050 after 10 d

- 53 out of 85 fungal strains were capable of cellulose and hemicellulose degradation
- 21 were able to decompose lignin-like model compounds

only these fungi caused weight loss of reed samples

- ➤ degradation rate: up to 68 % after 70 days
- > e.g. Trametes, Pycnoporus, Mycena

© Dosdall, 2012

fungal strain	weight loss [%]	weight loss [%]
	of reed after 45 d	of reed after 70 d
Control (without fungus)	$0,36 \pm 0,21$	$0,40 \pm 0,12$
Mycena arcangeliana SBUG 1709	$5,66 \pm 2,40$	$17,21 \pm 6,02$
Mycena spec. SBUG 1706	$4,77 \pm 1,19$	$14,00 \pm 2,99$
Mycena epip. var. viscosa SBUG 1630	$28,61 \pm 5,50$	$45,17 \pm 8,20$
Mycena gal. var. leucogala SBUG 1699	$2,04 \pm 0,69$	$7,75 \pm 2,76$
Trametes versicolor SBUG 1050	$28,66 \pm 1,18$	$51,5 \pm 2,82$
Pycnoporus cinnabarinus SBUG 1044	$33,03 \pm 8,42$	$67,95 \pm 9,79$

lignin seems protects cellulose fibres and hemicelluloses against penetration of

- water
- microbial degradation

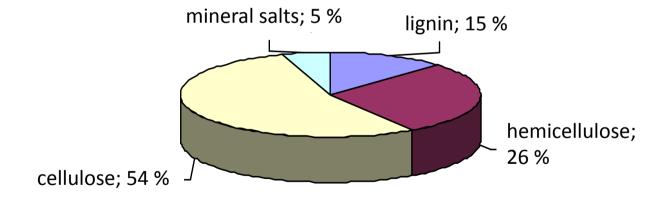
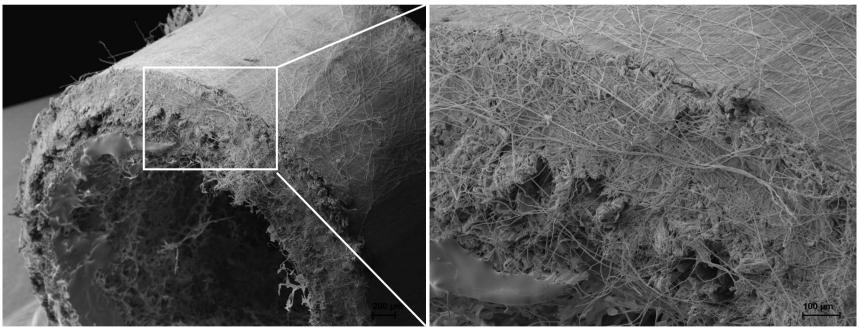
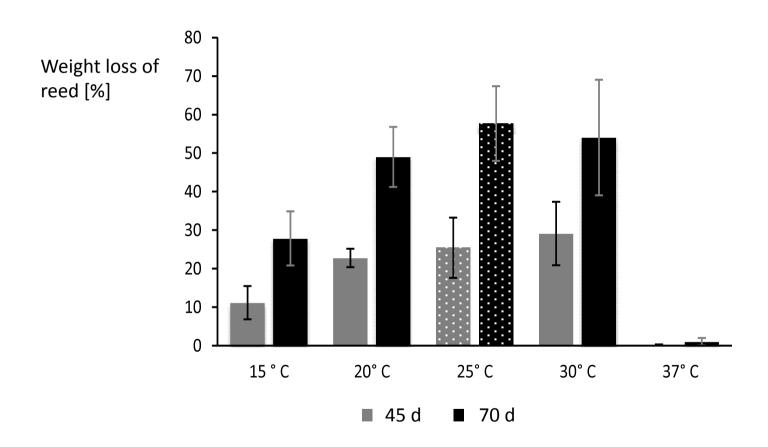



Fig. 1: Reed composition

Mycena epip. var. viscosa SBUG 1630 after 4d-growth on reed

• fungus grows especially on the inner surface of reed samples

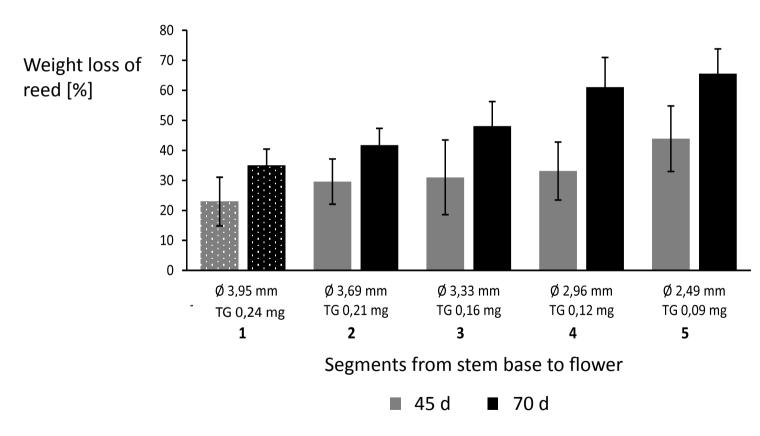


© Schlüter, Preuss, 2011

2. Impact of temperature on reed decay

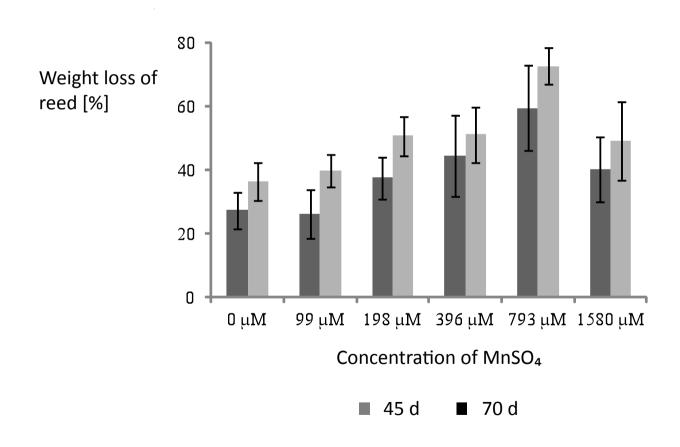

Test organism: Mycena epip. var. viscosa SBUG 1630

2. Impact of pH-value on reed decay


Test organism: Mycena epip. var. viscosa SBUG 1630

2. Impact of stem diameter

Test organism: Mycena epip. var. viscosa SBUG 1630



TG: dry weight

2. Impact of manganese

Test organism: Mycena epip. var. viscosa SBUG 1630

3. Summary

Isolation

• 92 bacterial and 85 fungal strains were isolated from thatched houses in Northern Germany

Enzyme activity

- 15 bacterial strains showed cellulolytic enzyme activity
- 21 fungal strains produced lignocellulolytic enzymes

Decomposition of reed

- only lignolytic fungal strains were able to decompose reed up to 68 %
- fungal hyphae attacked reed from inner and outer surface
- decomposition rate reached its maximum between 20 30 °C and pH 4 8
- reed stems of high diameters were more resistant against microbial attack
- supplementation with manganese led to increased decomposition rates

Acknowledgement

Thanks to:

QSR (financial support)

Prof. em. Dr. Hanns Kreisel (taxononic characterization)

Dr. Klaus Hofmann (isolation and characteriszation of bacteria)

Franziska Preuß (isolation and characterization of fungi)

PD Dr. Wolf-Dieter Jülich (statistic control)

Dr. Michael Borriss/Nord Reet UG Greifswald (establishment of tests systems)

Rohrdachdeckerei Konrad Engemann Evchensruh (reed delivery)

Rohrdachdeckerei Carls Neuenkirchen (reed delivery)

Thank you very much for your attention!

